Development of a Lightweight Tungsten Shielding Fiber That Can Be Used for Improving the Performance of Medical Radiation Shields

25 Nov.,2023

 

In this study, PE yarn was wound around a tungsten wire to fabricate a shielding fiber that can be used as a lining for lightweight shielding clothing. The study also developed an air pressure dispersion process to disperse nanotungsten powder to eliminate pinholes in fibers. The shielding performance and weight of the fibers were evaluated to determine the potential efficiency of the fibers in low-dose shielding suits used in medical institutions. Products presented as conventional radiation shielding fibers are mainly manufactured by coating the nonwoven fabric on the shielding sheet with an inorganic mixture [ 13 ]. However, the problems of these products concern the weight and flexibility of fibers. To solve these problems, this study proposes a method to improve the shielding performance while maintaining the flexibility of the fiber.

Radiation shielding involves absorption using a material made of an element with a large atomic number, such as lead, or reducing the transmission of radiation through interaction with the shielding material. Therefore, lowering the amount of radiation exposure requires selecting a shielding material considering the type and energy of the radiation [ 11 ]. In the low energy region of X-rays or γ-rays with high radiation transmittance, sufficient shielding effect can be obtained with relatively thin lead, but in the high energy region, the necessary protective effect cannot be obtained unless the shield is thickened [ 12 ]. However, if the thickness of the shield is increased sufficiently, the weight of the shielding suit also increases substantially, which hinders the activity of medical personnel who must wear it for a long time during work.

A previous study considered that scattered rays exist within 2 m of the radiation generating site, and for this purpose, suggested a shield with a thickness of less than 0.50 mm of lead equivalent [ 7 ]. However, in order to reduce the weight of the shielding lining, it is necessary to discover a new shielding material, and this is also related to the manufacturing process technology that is used to replace the shielding material, hence there are many complications in practical use. Recently, radiation shields have been developed using eco-friendly materials to avoid the toxicity of lead. Eco-friendly radiation shielding materials consist of tungsten, bismuth, barium sulfate, and boron, among others, mixed with a polymer material and manufactured in the form of a sheet [ 8 9 ]. Any shielding suit used in a medical institution must be lightweight and safe [ 10 ]. In order to maintain the same shielding performance for direct X-rays, it is difficult to significantly change the weight of the shield. However, since the scattered radiation generated in a certain distance and direction has a low dose, it can be shielded with lightweight shielding clothing.

Current radiation shielding clothing in medical institutions generally uses lead as the shielding material, however, the weight of this substance hinders the physical activity of medical staff and patients. A radiation protection apron having the equivalent to 0.50 mm of lead weighs between 3.01 and 3.15 kg. Because the front part offers protection from the shoulders to the knees, these are widely used in the vicinity of X-rays in medical institutions [ 6 ].

Most of the radiation exposure that is a problem in medical institutions is caused by indirect scattered rays rather than direct rays. Scattered radiation corresponds to a low dose, generally less than 100 mSv [ 3 ]. In the case of radiation exposure of less than 100 mSv, the Research Council Biological Effects of Ionizing Radiation report (BEIR VII) supports the theory of linear proportion without a threshold, thus, there is a direct potential for cancer and genetic disorders [ 4 5 ]. Therefore, the active protection of medical workers against low-dose radiation exposure is critical.

The increasing use of artificial radiation in medical institutions has increased radiation exposure in the diagnostic area [ 1 ]. Although the dose and quality of the radiation used for the diagnosis of diseases are relatively low compared to the radiation leaked from a nuclear accident, for example, even a very small dose can have a very dangerous effect on the human body [ 2 ].

2. Materials and Methods

3. As its shielding performance is close to that of lead, it has been widely used recently as an eco-friendly radiation shielding material [

The shielding material used in this study was tungsten, which has an atomic number of 74, an atomic weight of 183.84 g/mol, and a density of 19.25 g/cm. As its shielding performance is close to that of lead, it has been widely used recently as an eco-friendly radiation shielding material [ 14 ]. In this study, pure tungsten shielding fiber was produced from tungsten yarn made with industrial filament tungsten wire with a diameter of 30 ± 0.05 µm. The fabric was manufactured using a weaving machine (Rapier Loom, Dornier, HTVS 8/S20, Friedrichshafen, Germany). The diameter of the tungsten wire was selected such that it was small enough to maintain the flexibility of the tungsten fabric and provide a high weaving density, but not too small that the yarn could break during the weaving process. Therefore, a diameter of 30 µm was selected in this study [ 15 ]. In addition, the fabric was woven by the twill weave method to minimize the spacing between the yarns, which occurs in warp and weft yarns from the plain weave method traditionally used for weaving [ 16 ]. Figure 1 shows the technical difference between the twill weave method and the plain weave method. Warp and weft yarns are crossed one by one in the plain weave method, whereas two or more yarns are crossed in the twill weave method [ 17 ].

In previous studies, mesh-type connection or knit weaving methods were suggested [ 18 ]. However, maintaining a constant shape during processing and achieving reproducibility of the shielding performance requires a more effective weaving method. In addition, the fabric was intended to be stacked for shielding applications involving higher radiation intensities. Therefore, in this study, the fabric was fabricated with high density using the twill weave method. The reproducibility of the shielding performance depends on the thickness of the shield and the consistency of the process technology. Figure 2 presents a fabric woven using tungsten yarn and Figure 3 presents the fabric weaving process with a weaving machine.

Methods for improving the shielding performance of the woven shielding fiber include a laminated structure, that is, using multiple layers of overlapping fabric, and a double coating method [ 19 20 ]. In general, a laminated structure of shielding fibers has the disadvantage of increased shielding thickness. Therefore, in this study, a method was developed in which a polyethylene (PE) yarn was wound around a tungsten wire and then woven into a fabric, and tungsten nanopowder was dispersed in the woven shielding fabric.

Even with high-density weaving, gaps and voids between the yarns reduce the shielding performance of the tungsten shielding fiber. Therefore, filling the voids with tungsten nanoparticles was expected to improve the shielding performance of the fabric. The air pressure dispersion method of dispersing the tungsten nanoparticles on the shielding fiber fabric was configured as shown in Figure 4 21 ].

The air pressure dispersion method disperses tungsten nanoparticles onto the fabric through a thin air nozzle with a diameter of 1.5 mm. In this study, a direct-dispersion form was applied. A trace amount of thermosetting phenolic resin adhesive was used for the complete fixation of tungsten powder particles on the shielding fabric, thus, fixing the particles well, increasing the affinity with the fibers, and filling the voids. The dispersed tungsten powder was applied in a small amount of less than 8 wt% of the total shielding fiber.

In this experiment, to determine the shielding area for medical radiation, the range and energy of the scattered rays inside the imaging room, which is the diagnostic area, were presented, and the shielding performance of direct radiation was evaluated. First, to evaluate the shielding performance of direct rays, the range of X-ray energy used in the diagnosis area was tested based on human body imaging. The following conditions were used in the X-ray energy shielding test—tube voltage: 60–120 kVp, tube current: 200 mA, and irradiation time: 0.1 s.

Because X-ray energy is not a single energy source, the effective energy must be determined. The effective energy of the braking radiation X-rays can be determined using the half-value layer (HVL) measurement method [ 22 ]. The HVL is the thickness of a material that attenuates the incident radiation by half. Although there is a difference between materials, the effective energy can be calculated using the following set of equations, after the material for measuring the HVL is determined [ 23 24 ].

I 0 interacts with the shielding material while passing through the shield, the intensity I of the transmitted radiation can be expressed by Equation (1):

I = I 0 e − μ t

(1)

When the incident radiation intensityinteracts with the shielding material while passing through the shield, the intensityof the transmitted radiation can be expressed by Equation (1):

μ is the linear attenuation coefficient and

t

is the thickness of the shield. The HVL is the thickness of the material at which the intensity of the incident radiation is halved ( I 0 2 ). Thus, after the expression I = I 0 2 is substituted in Equation (1) with t =   HVL , it becomes I 0 2 = I 0 e − μ HVL :

μ = In 2 HVL

(2)

Here,is the linear attenuation coefficient andis the thickness of the shield. The HVL is the thickness of the material at which the intensity of the incident radiation is halved (). Thus, after the expressionis substituted in Equation (1) with, it becomes

Therefore, the effective energy of the incident X-rays can be determined using the linear attenuation coefficient μ calculated from Equation (2) and Hubbell’s mass attenuation coefficient [ 25 ].

1 − W W 0 × 100 [ W 0 is the irradiation dose measured when there is no shielding fiber between the X-ray tube and the dosimeter.

The medical radiation-shielding performance was evaluated for each calculated effective energy. For the experimental method for testing the shielding performance of the two shielding fibers presented in this study, the geometric conditions were set as shown in Figure 5 . The shielding rate calculation of the shielding sheet was 26 ]. Here, W is the irradiation dose measured when there is a shielding fiber between the X-ray tube (E7239, 150 kV-500 mA, Toshiba, Tokyo, Japan) and the dosimeter (Dosimax plus 1, IBA Dosimetry Corp., Schwarzenbruck, Germany)is the irradiation dose measured when there is no shielding fiber between the X-ray tube and the dosimeter.

In this study, in order to verify the effectiveness of low-dose radiation shielding in a general imaging room of a medical institution using the fabricated shielding fiber, the irradiation dose was measured from the X-ray generator referenced to the horizontal plane of the patient examination table [ 27 ]. The measuring points were set 360° from the radiation generator position and at distances up to 200 cm in 50 cm increments. The spatial dose was measured using a spatial dosimeter (Raysafe 452, Billdal, Sweden).

If you have any questions on tungsten shield, Tungsten Carbide Blanks. We will give the professional answers to your questions.